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Non-equilibrium flow inside a wavy cylinder 

By INGE L. RYHMING 
Aerodynamics and Propulsion Research Laboratory, Aerospace Corporation, Los Angeles 

(Received 15 april 1963) 

The small-perturbation theory for steady, inviscid, non-equilibrium flow is 
extended to include the transonic speed range. The resulting transonic small- 
perturbation equation for the velocity potential is solved for flow inside a wavy 
cylinder. It is shown that this solution gives a representation of transition 
through sonic speed at the narrowest sections of the cylinder. This extension of 
the theory is applied to non-equilibrium nozzle flow. 

1. Introduction 
An interesting non-equilibrium transonic-flow problem may arise in nozzles 

used in hypersonic shock tunnels. In  some cases, the shock-heated gas may not 
have reached an equilibrium state before beginning its expansion through the 
nozzle. In  order to study problems of this nature, a non-equilibrium transonic 
theory is necessary. 

The linearized theory of non-equilibrium, steady and irrotational gas flows 
has been studied in considerable detail. Non-equilibrium processes considered 
in the theory are either single vibrational or chemical processes. In the former 
case, a new state variable Ti (the internal vibrational temperature) and in the 
latter case, a (the degree of dissociation for chemical non-equilibrium of a 
dissociating diatomic gas) are introduced in the analysis. A rate equation for 
either of these variables, which describes a small perturbation of the equilibrium 
flow condition, is taken in linear form since small deviations from an equilibrium 
state are considered. It has been shown (Vincenti 1959; Moore & Gibson 1960; 
Clarke 1960), that the perturbation velocity potential CD in the axisymmetric 
case satisfies the equation 

(1)  
a 2 a )  a2CD l a @  a2CD a2CD l a0  

up+-+-- +b-+-+-- = 0, 
ax2 a r 2  r ar ) ax2 iir2 r ar 

where K is a measure of the relaxation length; a = 1 - M;,, b = 1 x is 
the axial and r the radial co-ordinate; and 44, and Mem are the frozen and 
equilibrium Mach numbers, based on the frozen and equilibrium speeds of sound 
afw and a,,, respectively. 

Solutions obtained by Vincenti (1959) and Clarke (1961) with equation (1)  for 
flow about bodies show several interesting properties. For example, if a finite 
value is assigned to the reaction-length parameter K ,  the solution for flow past 
a body does not break down in the transonic speed region. However, although 
finite values are obtained for all flow variables, the solutions in this region suffer 
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shortcomings similar to those of solutions to the classical Prandtl-Glauert 
equation. In  order to obtain a valid solution at transonic Mach numbers, the 
terms obviously missing in equation (1)  have to be included. 

In  this paper, the correct form of equation (1)  in the transonic speed range will 
be given under the assumption that the rate law still may be given in linear form 
at transonic speeds. Then, in order to exhibit the essential physical properties of 
non-equilibrium nozzle flows, a simple solution to the transonic equation will be 
developed. Such a solution, involving comparatively simple mathematical 
formalism, is obtained by considering flow inside a wavy cylinder. Subsequently, 
this solution will be used for a qualitative study of non-equilibrium versus 
equilibrium flow phenomena in a nozzle. 

2. Transonic correction of the governing equation 
In  order to derive the correct small-disturbance transonic equation, one ought 

to start with the exact gas-dynamic equations; however, one can also reason by 
analogy with the classical theory developed in correcting the Prandtl-Glauert 
equation in the transonic flow region. From this analysis, i t  is known that, at  
transonic speeds, the Prandtl factor 1 - MZ must be replaced by 1 - M2, and 
that, upon subsequent series development of this Mach number factor in powers 
of CD,, the additional term of importance is found (Oswatitsch 1956). 

By applying this reasoning to the present case, 1 - M;rn and 1 - M:m should be 
replaced by 1 - Mj and 1 - M,2 in equation (1) .  Upon developing these factors in 
powers of Op, we obtain 

and (3) 

where M& and M:rn are the critical Mach numbers based on the frozen and 
equilibrium critical speeds of sound, respectively. By introducing factors A and 
B defined as 

the small-disturbance, transonic, non-equilibrium equation is obtained: 

Equation ( 5 )  is, of course, the consequence of a postulated linear rate equation, 
which is assumed to be valid regardless of the particular range of speed con- 
sidered. This rate equation thus predicts small deviations from an equilibrium 
state of the new state variable, which is either Ti or a as before. In  the small 
perturbation theory, compressibility effects on the flow field are profound 
around Mach 1, which necessitates the delinearization of the velocity in equa- 
tion (1 ) .  However, the influence of the rate process on the flow field, relatively 
speaking, is equally sensitive to density changes in any particular speed range. 
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Therefore, the assumption of linearity of the rate equation in the transonic range 
seems to have the same physical justification as it would in any other speed 
rbgime. 

Equation ( 5 )  is highly non-linear since the right-hand member contains pro- 
ducts of derivatives of @. By letting K = 0, the equation reduces to the classical 
small-disturbance transonic equation for equilibrium flow. At the other limit, 
i.e. R + co, the equation is essentially the classical small-disturbance transonic 
equation, but with the Mach number based on the frozen speed of sound. 

Because of the non-linearity of the transonic equation, some form of lineariza- 
tion is generally employed in order to obtain solutions for actual flow problems. 
One method of linearization, in nozzle flows (Behrbohm 1950), as well as in flows 
over bodies (Oswatitsch & Keune 1955), is to replace @,% in the non-linear term 
by a constant. This procedure introduces a certain arbitrariness into the analysis 
since the value of the constant cannot be obtained from the analysis itself. 
Nevertheless, useful and simple results are obtained, which, with a judicious 
choice of the constant value of @,,, will give a good approximation to the flow 
field. 

By following these arguments in our analysis, we accordingly let 

C = @xxjUm = const. (6) 

in the non-linear terms on the right-hand side of equation (5), and obtain 

K(a~,,+@,,,+r-l@,)+(b-R~C) @,+cD,+r-l@,-BC@,, = 0. ( 7 )  

We shall calculate C by using the one-dimensional analysis for flow through 
converging-diverging channels. It is known that the velocity gradient d Wjdx a t  
the critical section in such a channel is related to the cross-sectional area f in 
the following way (Oswatitsch 1056): 

where the asterisk denotes the critical value at the narrowest section of the 
channel, and y is the ratio of the specific heats. By substituting CU, for the 
gradient dWjdz, and a;, for a* in equation (8), we obtain 

In the case where K = 0, MTm must be replaced by in the formula above. 

3. Flow inside a wavy cylinder 
We shall now find the solution to equation ( 7 )  for flow through the narrowest 

sections of a wavy cylinder. Subsequently, it  will be seen that, in the transonic 
speed range, such a flow will exhibit all the physical phenomena of interest. The 
technique used by Vincenti (1959) will be employed in developing the solution. 

Let the wavy cylinder wall be given by 

r = R + r sin 2nxjL, (10) 
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where R is the mean radius, r the amplitude, and L the wavelength (see figure 1). 
After introducing the new independent variables t and 7 defined by 

6 = 2nx/L, y = Bnr/L, 

E = 2nK/L, c = CL/Bn, 
and letting 

equation (7 )  takes the form 

E(aa"6 + + p a t 7 )  + ( b  - kAc) a,, + a7? + p D ,  - BcQ, = 0. (13) 

The value of c in equation (13) is found from equations (9), (10) and (12), 

FIGURE 1. Channel geometry. 

The tangency condition a t  the wall, taken in the usual simplified form, gives the 
following boundary condition to supplement equation ( 13) : 

@,, = Urn r cos 6 on 11 = 2nR/L. (15) 

A fundamental solution to equation (13) is 

@(L 7) = e"EF(r), 

where a: is in general a complex number. By inserting equation (16) into equa- 
tion (13) ,  the following ordinary differential equation is obtained for F(7): 

F" + 7-lFt - P2F = 0, (17) 

with p2 = -{Eaa:3+(b-EAc)a2-Bca)/(l+ka). (18) 

The general solution to equation (17)  is a combination of modified Bessel 
functions of the first and second kind, of order zero (Erde'lyi et al. 1953): 

F ( r )  = QlIO(P7) + c'2 Ko(Pr). (19) 

Since only the internal flow of the cylinder is of interest and because the solution 
must be regular for 7 = 0, the constant C, is zero. Furthermore, since we are 
seeking a periodic solution, CD may be written in the form 

W t - 9  7 )  = Cl e"*Io(Pr) + 61 eZCIo(Pr), (20) 
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where the barred quantities are the complex conjugates of the unbarred ones. 
I n  particular, the solution must be periodic in E ;  therefore, we choose a = i and 
a = - i  in equation (20). Also, by letting p = 6+ih and p = 6- ih, the solution 
takes the form 

CD(5,y) = Cl(cos6+isin6)Io(6y+ihg) +Cl(cos~- i s in~)I~(6y- ihy) .  (21) 

To find the real part of equation (21 )  some theorems from the theory of Bessel 

- 

functions will be used. For all z, t ,  we have (Erde’lyi et a l .  1953): 
m 

I& + t )  = I&) I&) + 2 c In(z) 
n=l 

Furthermore, by using the formula 

(22) 

where J,(z) is the Bessel function of the first kind, we obtain 

m 

and 

Similarly, with the help of the relation 

I,,( -2) = e innl , (x) ,  

and equations ( 3 3 )  and (32 ) ,  we get 

Io(6y - i h y )  = M ( y )  - i N ( y ) .  

CD = Cl(cos 6 + i sin 6 )  ( M  + in) + Cl(cos [ - i sin <) ( M  - i N )  

The expression for CD now takes the real form 

(25) 

(26) 

(27) 

( 2 8 )  

= D(M cos 6 - N sin 6 )  + E(M sin 6 + N cos t), (29) 

where D and E are real constants related to Cl and c1 through the relations 

D = Cl + C1, E = i(Cl - el). ( 3 0 )  

The two parameters 6 and h can be found by substituting p = 6 + ih and a = i 
into equation (18 ) .  By equating real and imaginary parts, the following two 
equations are obtained: 

= Q .  
k(a - b )  + c(B + Ak’) 62-h2 = b + a k 2 + k c ( B - A )  ~~. = p, 26h = ~ ____ 

1 + k 2  l + k 2  
( 3 1 a , b )  

Since afm > a,, (which means that iI4, < ille,), a > b and B > A > 0. Thus, 
since c > 0, we always have Q > 0. However, P may be either positive or negative 
depending on the values of Mf,, ill,,, k ,  and c .  The formal solutions for 6 and h are 

6 = f [-{ ; P +  - (P2fQ2)* ) ]* ,  h = [${ - P ~f: (P2 + &‘)&)]a. ( 3 2 ~ ,  b )  
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Both 6 and h must be real, and therefore the minus sign in front of (P2 + Q2)i 
in equations (32a) and (32b) has to be discarded. To satisfy equation (31b), 
6 and h must be either both positive or both negative. I n  deriving the formula 
for at, however, it was tacitly assumed that the functions M(7)  and N ( 7 )  have 
positive arguments. The positive signs for 6 and h are therefore chosen. The final 
formulas for 6 and h are 

’) = [ 1 
[ ~t (b-kAc+k[nk+cB])+{(l+k2)[(~k+~B)2+(b-k;Lc)2]}~]] 4 , h 3(1+E2) 

(33 ) 

The boundary condition given by equation (15) must also be satisfied. By 

(34) 

2JA(4  = Jn-,(Z) -Jn+,(4, (35) 

2 1 x 4  = L ( 4  + 4%+1(43 (36) 

where the upper sign goes with 6 and the lower with A. 

taking the derivative of equation (29) with respect to 7, we obtain 

<D, = D(M’ cos [- ”sin [) + E(M’ sin [ + N ’  cos [), 

where, with help of the formulas (Erde’lyi et al. 1953) 

we have, from equations (25) and (26), 

co dM 
M’(v)  = - = hZ,(hy) Jo(67) - &l0(hy) Jl(67) - 3 ( - l ) n  

d7 n=O 

X (hJ2,+2(’37) 12n+l(h7) + 1 2 f i + 3 ( h ’ ) I  + 612,+2(h7) [J2n+1(67) - J2n+3(87l)I), (37) 
dN 

and ”(7) = - = s ( - {hJ2,+,(W [ 1 2 n ( h )  + 12%+2@7)1 
n=o 

+ 812n+1(A7) [ J , n ( b )  - Jzn+2(WI}- (38) 

By inserting the value 7 = SnR/L into equations (37) and (38) and using equa- 
tions (34) and (15), we obtain simultaneous equations for D and E,  

Umr = DHh+ENA, 0 = -DNA+EMA, (35% b) 

where MA and NA stand for M’(2rRIL) and N’(BnR/L), respectively. The solutions 

(40) 
for D and E are E =  Urn TNA 

D =  

The potential <D can now be written in its final form 

MA2 + NA2 ’ MA2 + NA2 * 

at = 77, r[(MMA + NNA) cos + (MNA - NM;)  sin []/(Mh2 + Nh2). (41) 

4. The velocity field and the parameters 6 and h 

disturbance velocities atx and QT, and obtain from equation (41) 
I n  order to study various properties of the flow fleld, we next derive the 

- Q.r 
2nTIL 

- - ____ Nt2{[M(7)NA-N(7)  [lM(7) M A +  N ( ? l ) N h l  sin<}? 
U 

Urn LTco -MA2+ 
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"he potential expression (41) and its derivatives (42) and (43) are very general 
in the sense that they cover all reacting and non-reacting flows inside a wavy 
cylinder, from sub- to supersonic Mach numbers. The parameters 6 and h take 
different values for each flow case. For example, a classical equilibrium (k = 0) 
transonic flow has the parameters (see equation (33)) 

)I4]*. (44) h ( [ (  y + l  R-7 (l-M:w)z 
2 7  

= 2-4 +(l-M;w)+ ( 1 - i q w ) 2  1+-  ~ 

When 1C& + 1, this expression reduces to the form 

0 

0-5 - 

0 I I I I I ,  

0 7  0-8 0.9 1.0 1.1 1.2 1.3 1.4 Me, 

0 6  0 7  0.8 0 9  1.0 1.1 1.2 1.3 M f ,  
FIGURE 2.  6 and h as a function of Mach number and with k and R/r  as parameters. 

__ k = 1 . - - -  k = a . - - -  k = 0 .  

For a pure sub- or supersonic flow, c equals zero, since for c = 0 equation (7) 
reduces to the form of equation (1). To illustrate this, if subsonic equilibrium 
( k  = 0) flow is considered, 6 and h are given by 

6 = (1-J!qw)* ( A  = O ) ,  

the potential @ in this case reduces, as it should, to a known form in classical 
theory (Howarth 1953). 

In  order to exhibit the overall properties of 6 and h in greater detail, 6 and h 
have been plotted in figure 2 as functions of Mach number for a ratio of afw/a,, of 
11/10, and with k and R/r (or c )  as parameters. For k, the values 0, 1, and CQ were 
chosen, representing equilibrium, non-equilibrium and frozen flows, respectively. 
The value k = 1 for a non-equilibrium situation was chosen because it was found 
that this value of k gave very nearly maximum deviations from equilibrium and 
frozen values of 6 and h in regions where 6 and/or h are small. 

In  the transonic region, i.e. the region defined essentially by Mfm < 1 but 
ll&, > 1,  the various curves for different values of R/r overlap considerably. 
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Therefore, only one set of curves for a finite value of R/r is shown (R/r = 10). 
For comparison, the values of 6 and h for c = 0 were extended through the 
transonic region. It appears, however, that, in the transonic region, the curves 
labelled c = 0 are only strictly applicable to the case where the value of R/T is 
great, actually only for R/r = co. 

Consider next a sequence of flows through the channel with increasing Mach 
number starting from the subsonic side. At first, the values of 6 and h are those 
pertaining to c = 0. Upon approaching the transonic region, a transition must 
take place from the curves for which c = 0 to the curves that are dependent on 
the value of R/r and valid in the transonic region. A similar transition occurs 
again upon leaving the transonic region; hence, for pure supersonic Mach 
numbers, 6 and h have values that are obtained by letting c = 0. The present 
theory with its crude assumptions cannot predict these transitions, although the 
values of 6 and h themselves, within the framework of the linearization, are 
correctly given in the transonic as well as in the sub- and supersonic regions. 

It should be pointed out that in Vincenti’s paper (1959) treating the flow over 
a wavy wall, parameters 6 and h also appear, having the same meaning as here. 
The expressions for 6 and h found here are identical to those found by Vincenti if, 
in the present formulas, c = 0. 

5. A transonic flow example 
In  order to study the effect of relaxation on the flow, two actual flow patterns 

in the transonic region have been computed using the same geometrical con- 
figuration and the same values of a and b but different values for the relaxation- 
length parameter k. The channel is characterized by the parameters R, L and r ,  
and in the computed examples R/L = 0-5 and 7/L = 0.1. This gives a nozzle for 
which the ratio of the radius of curvature of the wall 1 to the radius of the cross- 
section a t  the throat is I/(R-r) = 0-634. The values a = 0.1 and b = - 0-1 were 
chosen to correspond to the case where Jlf, < 1 and ill,, > 1. The ratio afm/aem 
is then very nearly equal to 1.1. 

The intermediate value of k = 1 was chosen in one of the examples as being 
a value for which maximum relaxation effects can be expected according to 
figure 2. The results of the flow field computation for Ic = 1 using equations (42) 
and (43) are shown in figure 3, where the solid lines represent constant speed lines, 
[ ( U , + U ) ~ + V ~ ] ~ / ~ & .  The absolute value of the velocity vector is made dimen- 
sionless by the use of the physically significant parameter a& in this non- 
equilibrium case. 

The equilibrium ( k  = 0 )  flow pattern is also shown in figure 3 (dotted lines). 
For this case, the magnitude of the velocity vector is made dimensionless by the 
use of a:,, the significant parameter for equilibrium flow. The correct physical 
behaviour of the flow fields is thus shown in figure 3. It is seen that the sonic line 
in the equilibrium case has been moved somewhat upstream as compared with 
the non-equilibrium case, but in other respects has nearly the same form. The 
constant speed lines in both cases resemble familiar forms found in nozzle-flows, 
and the transition through sonic speed is clearly shown. 
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The value of QZz is found to remain almost constant in the flow field for a fixed 
value of 7 and M;, satisfying the inequality 0.9 < MT < 1.1. The value of 
(L/2n) (@xx/Um) in this Mach-number range varies almost linearly with 7 from 
0.24 at 7 = 0 to 0.68 at 7 = rr. The mean value of these two numbers corresponds 
very closely to the value of c computed by using equation (14). 

I 

IY= [( u, + 2L)2 + v2] 

- 2.0 - 1.0 0 1.0 6 
FIGURE 3. Transition through sonic speed in equilibrium and non-equilibrium flow. 

~~~ , W/a,*{k = 1); ---, W/a,*(k = 0). 

The change in other variables in the transonic region of the flow can readily be 
obtained from our solution. One finds, for example, that the disturbance value 
of a (or Ti) in the non-equilibrium case reaches a maximum value on a line that 
coincides with the sonic line a t  the axis, but otherwise lies slightly upstream of the 
sonic line. 

6. Final remarks 
The solution for non-equilibrium transonic flow through the narrowest sections 

of a wavy cylinder has been shown to give a representation of transition through 
sonic speed. Some physical properties of non-equilibrium nozzle flow may, 
therefore, be studied with this solution and compared with a corresponding 
equilibrium flow in order to obtain the effects of relaxation phenomena in the 
nozzle. The equilibrium or frozen solutions are presented as special cases of the 
more general solution. It is of interest that the sonic line in non-equilibrium flow 
is slightly downstream, as compared with its counterpart in equilibrium flow. 

The author is indebted to Mrs Helen Grihalva for her help with the com- 
putations. This work was done while the author was working with General 
Dynamics/Astronautics, San Diego, California. 
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